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Interfacial instability due to MHD mode coupling 
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This paper analyses instabilities on the cryolite/aluminium interface in an aluminium 
reduction cell. The simplified cell model is a finite rectangular tank containing the two 
fluid layers, and carrying a uniform normal current. The magnetic field is assumed to 
be a linear function of position. Several previous studies have considered waves 
consisting of a single Fourier component but here we consider perturbations which are 
a general combination of the normal gravity-wave modes. We derive a system of 
coupled ordinary differential equations for the time-development of the mode 
amplitudes, and show that instability can occur via mode interactions, the 
electromagnetic perturbation force due to one mode feeding energy into the other. 
Growth rates are determined by computing the eigenvalues of an interaction matrix, 
and an approximate method using only the three leading diagonals is developed. If two 
modes have similar frequencies they may resonate and become unstable at a very low 
threshold current. We consider the influence of various cell parameters and draw some 
general conclusions about cell design. 

1. Introduction 
Aluminium is manufactured by electrolysis of aluminium oxide in Hall-Heroult cells 

in which a layer of electrolyte - or cryolite - about 4 cm deep, floats on a pool of liquid 
aluminium, typically about 20 cm deep. Current is passed into the cryolite via a carbon 
anode block and leaves the cell through the carbon cathode block, which acts as a 
container for the liquid metal. The oxygen which forms at the anode as a reduction by- 
product immediately combines with the carbon to form carbon dioxide which bubbles 
outward and eventually escapes from the cell. As the anode is thus burnt up it is 
continuously lowered and eventually replaced. Typical cell dimensions are about 
8 x 4 m, and the DC current is about 2 or 3 x lo5 A. 

The intense current and associated magnetic field generate magnetohydrodynamic 
(MHD) forces which are useful in stirring the bath but which may also cause problems. 
One suCh is a deflection of the aluminium/cryolite interface from the horizontal, which 
in a new cell causes uneven current flow, current being diverted to the thinner sections 
of the cryolite layer (Lympany, Evans & Moreau 1983). However preferential burning 
of carbon where the current is strongest eventually carves out the anode block to follow 
the curvature of the aluminium surface. A more persistent problem occurs if the 
cryolite layer is too thin; gravity waves on the cryolite/aluminium interface can be 
destabilized by MHD effects, causing the aluminium to rise and short circuit with the 
anode. This problem limits cell efficiency since the thicker the cryolite layer (which 
offers most electrical resistance) the greater the cell resistance and power consumed. 

One of the first theoretical accounts of the instability is by Urata (1985) who derives 
an approximate wave equation for the interface, which is widely used in industrial cell 
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modelling. A number of authors - Sneyd (1985, 1992, referred to below as paper 1 and 
paper I1 respectively), Moreau & Ziegler (1986), Pigny & Moreau (1991) -have 
analysed the linear stability of sinusoidal interfacial waves and concluded that the 
magnetic field distribution, cryolite layer depth, and aluminium pool depth are all 
important factors. This work has also provided insight into the physical mechanism 
driving the instability. Numerical modelling by PotoEnik (1989) and Descloux, Flue& 
& Romerio (1991) has generally confirmed the theoretical conclusions. 

In the above linear studies, a single Fourier component is considered. In a system 
where the various Fourier modes are independent ~ usually the case for a homogeneous 
system - stability can be determined by searching for the mode with the largest growth 
rate. An aluminium cell however is not homogeneous since spatial variation in the 
magnetic field B is implied by Ampkre’s law V x B = ,uo J. An interfacial perturbation 
consisting of a single Fourier component say exp(ik.x) gives rise to a current 
perturbation j also proportional to exp (ik-x). The resulting Lorentz force j x B(x) 
however comprises a spectrum of Fourier components which can supply energy to 
other Fourier modes. 

In order to simplify the analysis as far as possible and highlight the essential physics 
we choose a very simple (and somewhat unrealistic) cell model in which the basic 
current J is purely vertical, and the basic field a linear function of position. Typically, 
when the cryolite/aluminium interface is perturbed, the restoring force due to gravity 
is much stronger than that due to electromagnetic effects. The resulting oscillation is 
therefore essentially a combination of normal gravity modes, weakly coupled by the 
electromagnetic force. We derive a coupled system of ordinary differential equations 
describing the time evolution of the amplitudes of the component gravity modes, and 
establish a simple approximate method of analysing stability. The key result is that 
destabilization can occur through a resonant interaction of two modes, the magnetic 
restoring force established by one mode feeding energy into the other. Thus the 
combination of two modes can be more unstable than either mode individually. The 
resonance effect is strongest if the natural frequencies of the modes are very similar, in 
which case destabilization may occur at a very low threshold current value. 

The plan of the paper is as follows. In $2 we detail our reduction cell model and 
describe the unperturbed equilibrium. Then in $ 3 we consider a general interfacial 
disturbance and derive a system of coupled ordinary differential equations for the 
coefficients of its Fourier components. Stability is determined by the eigenvalues of a 
mode-coupling matrix, and $4 outlines the calculation of this matrix. In 5 5 we discuss 
a simple method of estimating stability which requires knowledge of only the three 
leading diagonals, and compare the approximate theory with exact numerical 
calculations. Results concerning the influence of various cell parameters are discussed 
in $6 and finally, 97 summarizes our conclusions. 

2. Aluminium cell model 
In a real cell the two-fluid layer (cryolite and liquid aluminium) is bounded laterally 

by the carbon cathode block and frozen cryolite, and vertically by the carbon anode 
block above and cathode block below (figure 1). In our model we take the lateral rigid 
boundary to be a cylinder of arbitrary cross-section. (In practice this cross-section will 
be rectangular, but the theory is easier to formulate generally and we later specialize 
to this particular case.) The carbon anode is bounded below by the plane z = h, and 
the carbon cathode above by z = -Al, while z = 0 represents the unperturbed 
cryolite/aluminium interface (figure 1). The cryolite and aluminium volumes are 
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FIGURE 1. Diagram of model cell. 

denoted by D, and D,  respectively and their interface by S. The boundary of the region 
Di is denoted by aDi, and in particular the lateral surfaces by c?, Di. Generally we use 
variables with a subscript i to label the particular form of the variable in Di. 

In the unperturbed state we take the electric current as purely vertical, 

J = @ ,  

and the magnetic field a linear function of position, 

Bi = BOi + aij xj or B = B, + B,, 
where Bn is a constant vector and aij a constant second-order tensor. To avoid the 
complication of a steady-state electromagnetically driven flow we assume that the 
unperturbed Lorentz force is irrotational, which implies (paper I) that 

- 0. 
aB 
i3Z 
_ -  

Equation (2.1) together with Maxwell's equations, 

U- B = 0, V x B = p o J o f ,  
imply that aij must be of the form 

0 -; 0 R Q O  

0 0 0  

where R and Q are constants (see paper I). The first antisymmetric term can be thought 
of as representing the rotational part B due to local currents, while the second 
symmetric term represents the irrotational field due to remote current sources, such as 
those in the bus bars. An alternative expression for aij can be written in terms of /3 - 
the angle between the x-axis and a principal axis of the second symmetric tensor: 

0 -$ 0 cosp sinp 

0 0 0  0 0  (2.2) 

The variable q = (Qz  + R2)i represents the ratio of the contribution to B from remote 
currents to that from the local current. Generally one would expect q to be of order 
unity. 



346 A .  D. Sneyd and A .  Wang 

The equilibrium Lorentz force can be balanced by a pressure gradient - VpM, where 

3. Normal mode analysis 
3.1. Normal mode decomposition 

We choose as our basis functions, the eigenfunctions E,(x, y ) ,  n = 1,2, . . . , of the 
eigenvalue problem 

V2E+A2E= 0, VE- i i  = 0 on C?D,. (3.1 a, b) 
The eigenvalue corresponding to E, is denoted by A, and we assume that these are in 
ascending order. The E, satisfy the orthogonality relations 

l y E , E m d x d y  = 8 m , ~ ~ E , ~ ~ 2 ,  VE,.VE,dxdy = C Y ~ , A ~ ~ ~ E , ~ ~ ~ .  (3.2a, b) I, 
The free-surface displacement q(x,y) is expanded in terms of the En, 

m 

7 = C an,(t)Ea, (3.3) 
n = l  

where the a,(t) are functions of time describing the evolution of the wave. We make 
the usual assumption of linear wave theory that 7 and hence the a,  coefficients are 
small. 

An irrotational velocity field can be expanded in terms of the corresponding gravity- 
wave modes, v, = V$, say, where the harmonic functions $, are defined by 

and the functions Gi,(z) satisfy 

Specifically these functions are given by 

$,i(X> Y ,  4 = G,,(z) E,(x, v), (3.4) 

G:, - A: Gni = 0, GL,(h,) = Gil( - h,) = 0, G’,,(O) = GL,(O) = 1. 

-cash [A,(h, - z)] cash [A,(h, + 4 1  
Gn2 = A,  sinh ( A ,  h,) ’ Gnl = A, sinh (A, h,) ‘ 

Note that Vq5,sii = 0 on a(D,+D,), 
i.e. on the rigid lateral boundary, and also that 

The linearized kinematic condition at the interface z = 0 is 

a7 
a t  

v = v ,*z  = -. 1 

Substituting the expansion (3.3) for 7 we find 
a3 

(vi*.&, = C a,E,, 
n=1 

so in view of (3.7) the expansion of v must take the form 
‘x 

v = h,V$,. 
n=l  
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FIGURE 2. (a)  Flow paths for total current J when cryolite layer is perturbed. 
(b)  Streamlines of the current perturbation j .  

In the case of pure gravity waves, the dynamic interface condition implies that the a,(t) 
satisfy the simple harmonic equation 

where Ap = p1 -pz and Vni = coth ( A ,  hi). 

3.2. Evolution equations 
Perturbation of the cryolite/aluminium interface diverts the electric current through 
the narrowest parts of the poorly conducting cryolite layer (figure 2a), and this current 
perturbation j leads to a perturbation f" in the Lorentz force. In general f" is 
rotational as must be the ensuing fluid motion v .  Thus, in addition to the irrotational 
velocity field (3.8) there will be a rotational circulation vR say, and we write 

00 

v = C a, V$, + vR or v = v,+ vR say. (3.9) 
n=1 

In general such a decomposition of v into rotational and irrotational components 
would not be unique, but since the potential flow v p  is solenoidal and satisfies all the 
required boundary conditions, it follows that 

V - v R = O ,  v R . / i = O  on aDi. (3.10) 

The conditions (3.10) ensure the uniqueness of the decomposition. 
The linearized equation of motion in each layer is 

avi 
Pi,, = - (3.11) 
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where the unperturbed Lorentz force and its balancing pressure gradient (see (2.3)) 
have been omitted. 

Evolution equations for the coefficients a,(t) are obtained by taking the inner 
product of the equation of motion (3.11) with each V$,. We write the inner product 
of two vector fieldsJg, i.e. 

f g d V  more simply as ( J g ) .  s %+D2 
To deal with the first term of (3.11) we note that 

$ , V R . i i  = 0, J ?D,+FD, V * (9, vR) d V = 
D,+D, 

in view of conditions (3.10). Fortunately the rotational circulation (which would be 
awkward to calculate) does not affect the evolution equations. 

To deal with the potential flow component u p  we use expansion (3.8) and the 
orthogonality condition (3.2b). Then applying the divergence theorem to V$,-  V$ ,  = 
V-($ ,V$, ) ,  and the boundary conditions (3.6), (3.7) we find, 

W$,, 0 4 , )  = i 1 Pi V$,i.V$ki dV = @ 1 & 1  - P z  $k2)z=0 EI, dxdy. 
i = l  Di S 

Since the velocity u p  is a small perturbed quantity, the integral is taken across the 
unperturbed interface z = 0. Using (3.5) we now find 

( P G  V$,> = ~ C p z ~ , z + ~ l ~ , ~ ~ I l ~ , l l z .  (3.12) 

Since - Vpi - V$,, = - V (pV$,J,  the inner product of V$,  with the pressure term 

(3.13) 

A, 

in (3.11) yields 
P S @ $ , ,  - V$,,>* fi dS. 

Here S' represents the perturbed interface, and we have made use of the fact that p is 
continuous across the interface, the common value being denoted byp,,. We may write 
p,.  =po+p '  where po  is the constant value of the unperturbed pressure on the 
unperturbed interface z = 0, and p' a small perturbation. Then to leading order (3.13) 
becomes r r 

The first term vanishes by virtue of mass conservation of each layer, and the second by 

( -VP, V$,> = 0. (3.14) (3.7). Thus 

This expresses the simple physical result that pressure forces do no net work. 
In evaluating the inner product of V$,  with the gravity term, the first-order 

contribution arises from the perturbation to the region of integration, 7 d S  having been 
added to D ,  and removed from D,. Thus, 

(3.15) 

by virtue of the orthogonality condition (3 .2~) .  
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Sincexw is a linear function of 7 (the exact relationship is detailed in $4) then from 

xw = c a n ( t > f Z  (3.16) 

where fz represents the (linearized) contribution to the Lorentz force perturbation 
arising from a perturbation En to the free surface. We define dimensionless magnetic 
interaction coefficients y k n  by setting 

(3.3) we see that 
5 

n=l 

and it follows from (3.16) that 

(3.17) 

(3.18) 

Now combining the results (3.12), (3.14), (3.15), (3.18), and taking the inner product 
of (3.11) with V &  we obtain the following set of evolution equations : 

(3.19) 

The dimensionless parameter c = -  Po J," (3.20) 

is a measure of the relative importance of magnetic and gravity restoring forces to 
interfacial waves. In a typical aluminium reduction cell, c is quite small - of order 10-1 
or lo-'. 

gh,  AP 

4. Calculation of ykn 

force perturbation AM. To leading order, 
The ykn  coefficients represent the potentially destabilizing feedback of the Lorentz 

Ay = j i  x B+J,i!x b,, (4.1) 

where the j ,  is the current perturbation. 

4.1. Current perturbation 
In calculating the current perturbation j ,  we shall for simplicity treat the anode as a 
single uniform carbon block. Many modern plants use a series of slightly separated 
anodes, so that the j i  circuit is completed in the buswork, leading to a different 
magnetic field perturbation. 

Using Ohm's law and the electrostatic approximation, we write 

j i  = Vy?i, V2$, = 0. (4.2a, b) 

The lateral cell boundaries have much weaker electrical conductivity than the interior, 
so we may treat them as insulating and set 

I2 F L M  263 
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Thus, the general form for the current potential perturbation can be expanded in the 
form 

$i = J ,  C Hni(z) an(t> En(x,Y), (4.4) 

where the Hni(z) satisfy Hi6(Z) - A ;  H,&) = 0. (4.5) 

v 'eryot i te  + g'carbon + galurninium, 

m 

n=l 

One can take advantage of the electrical conductivity ordering, 

to derive approximate boundary conditions for the Hi,. Since the carbon anode is a 
perfect conductor relative to the cryolite, and the carbon cathode a perfect insulator in 
comparison with liquid aluminium, we may approximate 

H,,(h,) = 0, H;l(-hl)  = 0. (4.6 a, b) 
Continuity of tangential electric field and normal current at z = 0 gives 

H,,(O)+ 1 = 0, Hil(0) = Hh2(O). (4.7a, b) 
(A detailed justification of these approximate boundary conditions is given in the 
appendix to paper 11.) Explicitly one finds 

4.2. Orders of magnitude 
In a typical aluminium reduction cell, the layer depths h,, h, are typically about 5 cm 
and 20 cm respectively - much less that the horizontal lengthscale, L say, of several 
metres. This large aspect ratio intensifies the perturbation currents, particularly in the 
aluminium layer, and we need to estimate ( j (  to identify the dominant terms in 
perturbed electromagnetic body force. 

In view of the large aspect ratio, the terms h,h, or A,z in (4.8) will be small. Thus 
we can approximate 

H n 2 ( z )  -(I  - z / h J ,  Hn1 l / ( A i  hz), 
and the dominant components of the perturbation currents are given by 

. 4 s -  . J ,  O0 

h2 ' 1  n=l 
J ,  = -z, j 1  = - C A;2a,(t)VE,. (4.9) 

In the cryolitej is almost vertical, as the current follows the shortest path through the 
poorly conducting layer. Where the layer is narrow (71 > O ) j ,  reinforces J ,  2 since current 
converges towards this region. In the aluminiumj, is intense and nearly horizontal as 
the current is forced to recirculate through the narrow layer. Field lines of the current 
perturbationj are shown in figure 2(b). 

The perturbation current is most intense in the aluminium, where 

(4.10) 

A being a typical free-surface elevation and L a horizontal lengthscale: L = A;' for 
example. The ratio of the electromagnetic force perturbation to the gravity body force 
perturbation is of order 

(4.1 1) 
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where B = poJ, L is a typical magnetic field strength. Taking typical values in SI units, 
J ,  = lo4, A p  = 1.82 x lo2, g = 9.81, L = 2, h, = 2 x lo-', h, = 5 x lo-', we find 

N M  = 56.3 

It therefore appears that electromagnetic forces dominate the evolution of the 
perturbation. Current intensification due to the large cell aspect ratio means that the 
correct ratio of electromagnetic to gravity forces is not e (defined in (3.20)), but rather 

r 2  
(4.12) 

4.3. Magnetic field perturbation 
The magnetic perturbation bni due to mode n of the current perturbation satisfies 

V *  bnt = 0,  V x bni = p,, J ,  an(t) V[Hni(z) En]. (4.13 a, b)  

As a trial solution we set bnt = Po J ,  Vxni x 2. 
This satisfies (4.13 a)  identically, and substitution into (4.13 b) gives 

Using (4.5) we see that (4.13 b) will be satisfied by choosing xni = h;2Hhi(z) E,(x, y). 
Thus, the magnetic perturbation is 

(4.14) 
n=o An 

The current perturbation extends of course into both the anode and cathode where 
it is also given by potentials of the form (4.4), which we have not quoted explicitly since 
this has no effect on the cell dynamics. Expressions of the form (4.14) could also be 
written for the field perturbation in anode and cathode, and we note that b is 
continuous across the interfaces z = h,, z = 0,  z = -hl, since Hhi is continuous by 
virtue of continuity of normal current. However, our solution (4.14) is not continuous 
across the lateral boundaries where, in view of (3.1 b), V E ,  = (aEn/as) $, s being a 
coordinate along the boundary. The field perturbation at this boundary is therefore 
given by 

To make the field continuous across aL D we superimpose a potential magnetic field bP 
say, due to a surface distribution of 'magnetic charge' of strength (b.fi)aLD on aL D. 
Strictly speaking therefore, the field b' should be added to our solution (4.14). 
However, the dominant contribution to this field arises from the intense horizontal 
current in the aluminium, so in the cell interior b, will be O(h,b/L) and hence 
negligible for a typical high-aspect-ratio cell. 

From (4.14) one can find the order of magnitude estimate of the perturbation field, 

(4.15) 

This estimate can be deduced directly from Ampkre's law, V x b = p o j  together with 
(4.10), using the lengthscale h, for derivatives of b. 

12-2 
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4.4. Lorentz ,force perturbation 
Substituting (4.4) and (4.14) into (4. l), one finds the Lorentz force perturbation 

J 2  
f n  -7 - O H' n n  V E  x f + J , ( H n  VE, + Hk En f) x B. 

Thus, 

f~'.V$, =---H~G,VEk.DE,$J,GkHn(VE,xB).VEk Po J," 

+ J ,  H, G; Ek(VEn x B) * 2 -  J ,  Hk Gk En(VEk x B) -2. (4.1 6) 

Substituting (4.16) into (3.17), yields 

where = Gk(z) Hn(z) dz, 

(4.17) 

(4.18a) 

If2 = J (VEkxVEn).Z"dxdy, 1fd = Ek(VE, x B).fdxdy. (4.18d,e) 
S Js 

In the particular case of most interest, the rectangular cell, 0 < x < a, 0 < y < b the 
eigenfunctions are given by 

mnx nny 
a b 

Ek = COS-COS-, 

where m, n range over the positive integers and 

A, = [(F)z+(T)?li. 
Expressions for the integrals Zpi in this case are given in the Appendix. 

4.5. Rescaling the interaction coeficients 
The discussion of orders of magnitude earlier in this section showed that the 
dimensionless parameter e underestimates the perturbed electromagnetic force. 
Equation (4.12) shows that in order to obtain interaction coefficients &, of order unity 
we should rescale by setting 

4, = A; h, h2 ykn so that eykn = NM Gn. (4.19 a, b) 

Equation (3.19) can now be rewritten 

It follows from (4.19~2) and (4.17) that 

(4.20) 
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Order-of-magnitude estimates show that the second term in this equation is O( 1)  while 
the remaining terms are O(h,/L). Thus the vertical component of magnetic field seems 
to have a dominant influence, and this is confirmed by our detailed results described 
in $6.  However, the horizontal fields may sometimes be much larger than B,, so we 
retain all terms in (4.21). The neglected term bp in the perturbed magnetic field would 
give a contribution to G,, of order (h,/L)'. 

5. Approximate analysis for slightly separated natural frequencies 

w2 must be an eigenvalue of the matrix, S2 - NRI r, where 
If we truncate the infinite system (4.20) to size N and let a,(t) = x, eiWt, we find that 

8 = diag(SZ:,Oi,. . . ,52i7), r = (lJ. 
The constants x, form the corresponding eigenvector. Any eigenvalue with non-zero 
imaginary part, w2 = v+i7, say, where v and 7 are real, corresponds to an unstable 
mode with growth rate {i[(v2 + 7'); + v])4. 

When NM = 0 (no electromagnetic effects) the eigenvalues are simply the natural 
frequencies for gravity waves in the cavity, which are always stable provided pa < pl. 
However, as N? increases, a pair of real eigenvalues may coalesce and bifurcate into 
a complex-conjugate pair (figure 3a). Clearly if two natural frequencies are close 
together bifurcation - and hence instability - may occur at a small value of NATf, in 
which case a simple approximate stability criterion can be established. 

Suppose (without loss of generality) that the natural frequencies Q,, 52, are close 
together. The eigenvalue equation can be written, 

where A, is 2 x 2, B, and 6, ( N - 2 )  x 2, etc. The first two rows of this equation give 

A, V,+BT v, = w 2 F ,  (5.1) 
where the matrix 6, = O(N,) since it is composed entirely of elements of N ,  I?. When 
N M  = 0 the eigenvector associated with 52, or 52, is (1,0,0,. . .)T, or (0,1,0,. . . ) T ,  or a 
linear combination of both in the case of a repeated eigenvalue. Thus the vector V,  is 
also O(N,) and (5.1) can be written, 

A, = w y  + O(N&). 

We conclude that for small N,, the eigenvalues are approximately equal to those of the 
2 x 2 submatrix A,. 

Suppose more generally that the natural frequencies SZ,, Q,+, lie close together. 
Using the approximate theory we find that for small NM these frequencies will be 
perturbed to 

where the discriminant d is given by 

.;, .;+, = ;[Q; + q+, - N~ rs 4, 

and we have abbreviated, 

(5.2) 
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FIGURE 3. (a) Coalescence of eigenvalues and bifurcation into the complex plane. 
(b) Possible forms for the graph of A versus N,,. 

The eigenvalues coalesce when d = 0, i.e. when 

so coalescence occurs only if r, 0. 

When (5.4) is satisfied there are three possible forms for the graph of d versus N M ,  
illustrated in figure 3(b). If the coefficient of N L  in (5.2), 

r;+4rp = A say, 
is negative the roots (5.3) have opposite sign. Since NM is positive by definition we are 
concerned with only positive roots, and the plus sign must be chosen in (5.3). If on the 
other hand A > 0 there are two possibilities. If I', < 0 both roots are negative and no 
bifurcation occurs; otherwise both roots are positive and bifurcation occurs at the root 
given by the positive sign in (5.3). Curiously, in the latter case, restabilization occurs 
at a higher value of N M .  

To summarize, complex bifurcation and instability occur if 

[r, < O ]  and [ (A  < O )  or ( A  > O  
The critical value of NM for onset of instabiiity is 

6. Results 
In this section we examine the effects of various cell parameters on stability. In all 

calculations we took a cryolite depth of 5 cm, an aluminium pool depth of 20 cm, and 
considered only the first 12 modes (see figure 6). Exact eigenvalues of the interaction 
matrix were computed using the NAG routine F02AFF. 
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FIGURE 4. (a) Comparison of estimated and exact values of NMc. (b) Graph of minimum natural 
frequency separation versus cell width b. In both diagrams the cell length a = 7.7 m, h, = 0.2 m, 
h, = 0.05 m. In (a) B,,/,u,J,a = 0.026, B,, = B,, = 0, q = 1 and ,8 = 90". 

Figure 4(a)  compares exact values of N,, obtained by computing the eigenvalues of 
the full matrix, with estimates based on the approximate methods described in $5.  The 
estimate of N,, is the value given by (5.6) minimized over all adjacent frequency pairs 
(the minimum usually occurring at the frequency pair that is closest together for 
N ,  = 0). 

Figure 4(b) shows a graph of the minimum natural frequency separation for a 
rectangular cell (taken over the first 12 modes) versus width b for a cell of fixed length 
a = 7.7 m. Aspect ratios where two natural gravity-wave frequencies coincide could be 
called critical, since such cells may be very easily destabilized. Figure 4(b)  shows 
fourteen such critical aspect ratios but in figure 4(a) there are only eight values of b at 
which N,, --f 0. The remaining six (for example b z 3.9) correspond to the case 
A > O,r, < 0 illustrated in figure 3 ,  and no transition to instability is predicted by 
either the exact calculations or approximate theory. However, an instability 'spike ' 
appears to be drawn down from the exact graph. 

Generally our estimated N,, is quite accurate, particularly near critical aspect ratios 
where destabilization occurs principally via a two-mode interaction. It is less accurate 
when the cell is very stable and many modes must combine to effect instability. At one 
critical aspect ratio (b = 5.5) our approximate method predicts transition to instability 
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FIGURE 5 .  Graphs of N,%*, versus q (the external horizontal magnetic field strength) for various values 
of the dimensionless vertical magnetic field B,,/,uo J ,  a. Other cell parameters have the following fixed 
values: u = 7.7 m, b = 4.0 m, B,, = B,, = 0, h, = 0.2 m, h, = 0.05 m, ,8 = 90". 

but the exact calculation does not. The instability predicted by the approximate two- 
mode analysis is very weak, and is overwhelmed when the effects of other modes are 
taken into consideration. 

To emphasize one of the main points of this paper - if any two natural gravity-wave 
frequencies are nearly equal only a very small electromagnetic force is necessary to 
destabilize the system. There is a resonant interaction between the two modes, the 
Lorentz-force perturbation due to each one energizing the other. The physics of the 
resonance is complicated, depending on cell geometry and the details of the local and 
far fields, but the mechanisms would be similar to that described in paper 11. Cells 
should be designed therefore with an aspect ratio aimed at keeping the eigenvalues A,, 
and hence the natural frequencies, as far apart as possible. From figure 4(b) it appears 
that an aspect ratio of about 7.7/3.0 maximizes frequency separation, but as we have 
seen, not all potential resonances actually lead to instability. 

In figure 5 we examine the effect of the far-field strength, plotting N M c  versus q for 
various values of Bo,. Generally the trend of the graphs is downwards with increasing 
q, showing - as one would expect - that increasing the external magnetic field makes 
the cell more unstable. When B,, = 0 the graph is discontinuous at q FZ 0.5 where 
destabilization via a second and closer frequency pair first becomes possible. Clearly 
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FIGURE 6. Graphs of N,,, versus /3 (the angle between the principal axis of the far field and the major 
cell axis) for various values of B,,/pu,J,a. The solid curve B,,/p,,J,a = 0.0519 was computed with 
N = 12, i.e. with a 12-mode truncation level, and the adjacent dotted curve with N = 24. For  the other 
curves the two truncation levels give indistinguishable results. 

however the influence of B,, is predominant - the critical value of NM decreasing 
rapidly as the vertical field increases. 

In figure 6 we plot N,, versus /? - the angle between the principal axis of the external 
magnetic field, and the x-axis, or major cell axis. The cell is most stable when the 
principal axis, or symmetry axis of the external field, is inclined at an angle of 270" to 
the longer cell wall, and most unstable when this angle is 90". It is not surprising that 
there exists such a marked lack of reflectional symmetry, given that B is a pseudo 
vector (Moffatt 1978). This figure also provides justification for the 12-mode truncation 
level. The dotted curve adjacent to the solid curve (B,,/,uu,J, a = 0.0519) was calculated 
using a 24-mode truncation level, and clearly the results differ only slightly. For the 
other two curves the results are indistinguishable. 

It is interesting to compare our results with those obtained from previous 
calculations based on a single Fourier mode. For example paper I1 predicts that 
instability will occur when 

Our results generally predict instability when N M  = O(1) (as our order-of-magnitude 
analysis would suggest) and the presence of cell walls therefore seems stabilizing. 
However, when two natural frequencies are weakly separated it is clear from (5.6) and 
figure 4(a, b) that instability can occur for arbitrarily small NM via a two-mode 
resonance. Moreover, even when the natural frequencies are well separated, the vertical 
magnetic field can destabilize the cell when N M  = O( lo-') (figure 5). Generally our 
stability predictions seem consistent with the single Fourier component models, but 
mode resonance is a new feature. 

In all the above results, N,, is taken as the smallest value of N ,  for the onset of 
instability. As pointed out in $5 our approximate theory predicts that the cell may 
restabilize as N ,  is further increased. This curious feature has also been noticed in our 
exact numerical calculations, but these always predict a further eventual destabilization 
by a different mode pair. These isolated stability bands which thus occur in an unstable 
region are usually quite narrow. 
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7. Conclusions 
In this paper we have developed a normal mode stability analysis for interfacial 

waves in an aluminium reduction cell. Such waves consist essentially of a combination 
of gravity modes weakly coupled by electromagnetic effects. Our most significant 
conclusion is that previous stability theories which analyse a single Fourier component 
wave are incomplete. The heterogeneous magnetic field links the evolution of different 
modes, which may thereby destabilize one another. In particular, if two modes have 
similar frequencies they may interact resonantly to destabilize the cell at quite small 
current values. 

Stability is determined by calculating the eigenvalues of an interaction matrix which, 
in general, might be time-consuming to compute. However, an approximate method of 
analysis is available which involves calculation of only the three main diagonals or, 
when two natural frequencies are almost equal, only a 2 x 2  submatrix. This 
approximation seems accurate unless the cell happens to be particularly stable. 

Our results show that cells become more unstable as the external field increases. An 
order-of-magnitude analysis shows that the vertical field component is particularly 
dangerous, and this is confirmed by detailed calculations. Cells are most stable when 
the symmetry axis (or principal axis) of the external field makes an angle of 270" with 
the major cell axis, and most unstable when this angle is 90". 

Although our model cell is very simple and somewhat unrealistic, the method can be 
generalized to deal with cells of arbitrary shape, and general magnetic fields. One 
complication we have avoided (by means of the simple vertical current distribution) is 
that in general the cryolite and aluminium layers will be moving, possibly with different 
velocities. This means motion would need to be calculated and a Kelvin-Helmholtz 
instability incorporated into the analysis. A more realistic treatment should also 
include damping due to fluid or turbulent viscosity, and to induced currents. 

In the course of this work A. W. was supported by a Comalco Doctoral Scholarship. 
We also acknowledge many useful discussions with David Billinghurst and other staff 
of the Comalco Research Centre, Melbourne, Australia. 

Appendix. Expressions for integrals 
This Appendix gives explicit expressions for the integrals (4.18) : 

where Yki = cosech (A, hi). 

a pair of integer subscripts: 
In the case of the rectangular cell the eigenfunctions are most naturally labelled by 

Em, = cos (rnnxla) cos (nnylb). 
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We also introduce the symbol 

0 if m + p  is even; 
2 if m + p  is odd; 

where m and p are integers. 

m2q2 -p2n2 m + p  and n $: q. 
= ls (VEmn x VE,,)+z"dxdy = vmpcnq (m2 - p 2 )  (q2 - n2) ' 

Otherwise = 0. 

provided m $: p and n $: q. 

(41 - ""," + [nmp(Bo, b )  - aZl b( - l)m+p]. 
2(P - m >  Imnpn = 
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